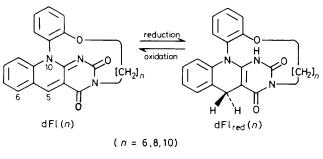
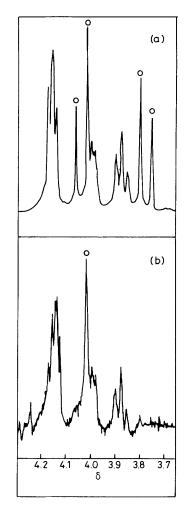
Diastereo-differentiating Hydrogen Transfer in 5-Deazaflavins

Seiji Shinkai,* Akito Kawase, Toshiro Yamaguchi, and Osamu Manabe

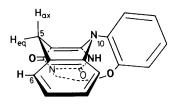

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852, Japan

Reduction of 5-deazaisoalloxazinophanes dFl(*n*) in which N(3) and O(2' α) in the 10-(2-hydroxy)phenyl group were linked by a (CH₂)_n chain (*n* = 6,8) resulted in the boat-shaped 1,5-dihydro forms dFl_{red}(*n*); hydrogen transfer to dFl(*n*) and from dFl_{red}(*n*) occurred exclusively at the axial C(5) position.

In NAD(P)H, the two protons at C(4) of the 1,4-dihydronicotinamide moiety occupy diastereotopic positions. Discrimination between these two protons is possible from their ¹H n.m.r. chemical shifts, but the difference (if any) becomes minimal in the free coenzymes.¹ In an NAD(P)H model system Rob et al.² and de Kok et al.³ demonstrated that these protons show quite different chemical shifts when the nicotinamide skeleton is included in a ring structure. By using these NAD(P)H model compounds they showed that hydrogen exchange occurs exclusively at the axial C(4) position.^{2,3} 5-Deazaflavin is known to serve as an essential skeleton in cofactor F_{420} .⁴ Since the nitrogen at the 5-position in flavin has been replaced by a carbon in this compound, it is well suited for studies of the hydrogen exchange mechanism not only in cofactor F₄₂₀ but also in flavin coenzymes. In order to investigate this problem we synthesised 5-deazaisoalloxazinophanes dFl(n),⁵ the reduced forms $[dFl_{red}(n)]$ of which were expected to give the different chemical shift for the two C(5)protons, and studied how hydrogen is transferred to and from the C(5) position (Scheme 1).


When dFl(n = 6,8,10) were reduced with NaBH₄ in CD₃OD, the ¹H n.m.r. spectrum (400 MHz; JEOL GX-400 spectrometer) gave a pair of doublets for the two C(5) protons [Figure 1(a)]. The result indicates that the central ring in dFl_{red}(n) adopts a boat-shaped conformation affording magnetically non-equivalent protons, H_{ax} and H_{eq}. Here, we applied the nuclear Overhauser effect (n.O.e.) in ¹H n.m.r. to the assignment of H_{ax} and H_{eq}. The result [measurements with respect to 6-H in dFl_{red}(n = 6); CD₃OD, 20 °C] established that H_{eq} and H_{ax} can be assigned to the lower and the higher magnetic field, respectively.

First, we reduced dFl(*n*) by three different methods: (i) NaBD₄ (98% isotope purity) in CD₃OD; (ii) Na₂S₂O₄ in D₂O (100% isotope purity)–CD₃OD (99.5% isotope purity) (1:4 v/v); and (iii) 4,4-dideuterio-1-benzyl-1,4-dihydronicotinamide (BNAD; 96% isotope purity) in D₂O–CD₃OD (1:4 v/v). In the ¹H n.m.r. spectra of dFl_{red}(n = 6) (Figure 1) and dFl_{red}(n = 8), the H_{eq} (integral intensity 1H) was still present as a single line, while the H_{ax} peak had almost completely disappeared. This indicates that the incorporated hydrogen occupies almost exclusively (>95% judging from the accuracy of ¹H n.m.r.) an axial position.



Scheme 1

In contrast, $dFl_{red}(n = 10)$ gave both H_{eq} and H_{ax} signals (integral intensity 0.5 H each) in 1:1 intensity ratio. We previously found that dFl(n) (n = 6,8,10) with planar chirality are optically stable at room temperature, but $dFl_{red}(n = 10)$ is rapidly racemised while $dFl_{red}(n = 6)$ and $dFl_{red}(n = 8)$ are not (Scheme 2).⁵ It is known that the 5-deazaflavin ring has a 'tense' planar structure, while the 1,5-dihydro-5-deazaflavin ring has a 'relaxed' structure folded through C(5) and N(10) like butterfly wings,^{5.6} similar to that of 1,5-dihydroflavins.⁷ Thus, sterically-relaxed $dFl_{red}(n = 10)$ can racemise in a 'rope-skipping' manner. In $dFl_{red}(n = 6)$ and $dFl_{red}(n = 8)$, on the other hand, the 'rope' is too short to 'skip'. Conceivably, hydrogen is incorporated primarily into the axial C(5) position of $dFl_{red}(n = 10)$, but is rapidly exchanged through the 'rope-skipping' interconversion.

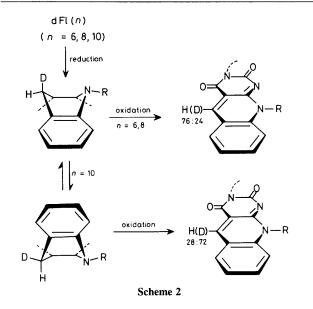


Figure 1. Partial ¹H n.m.r. spectra (400 MHz) of $dFl_{red}(n = 6)$ in CD₃OD at room temperature: (a) reduced by NaBH₄; (b) reduced by NaBD₄.

Table 1. Deuterium content (%) at the C(5) position in reoxidised dFl(n).

	dFl(<i>n</i>)		
Preparation method of $dFl_{red}(n)$	n = 6	n = 8	n = 10
NaBD₄	20	23	72
$Na_2S_2O_4$ in D_2O-CD_3OD	20	—	_
BNAD	28		

 $dFl_{red}(n)$ in deuteriated solvents was mixed with *N*-methylacridinium iodide (1.2 equiv.) in water and stirred for 1 h at room temperature. Reoxidised dFl(n) was extracted with chloroform and purified by preparative t.l.c. The ¹H n.m.r. data of dFl(*n*) thus obtained (>90% recovery) are summarised in Table 1. Table 1 shows that dFl(n = 10) contains 72% deuterium at the C(5) position. From this result one can estimate the primary isotope effect for dFl_{red}(n = 10) \rightarrow dFl(n = 10) to be $k_{\rm H}/k_{\rm D} = 72/28 = 2.6$. On the other hand, the H_{ax}-H_{eq} exchange is impossible in dFl_{red}(n = 6) and dFl_{red}(n = 8),⁵ which give products with almost constant deuterium content, 24 ± 4%. Taking the primary isotope effect into account, the reactivity ratio of H_{ax}:H_{eq} is calculated to be (76/24) × 2.6 = 8.2. This corresponds to a diastereo-differentiation ability of dFl(n).

In conclusion, this study demonstrates that the hydrogen transfer to and from 5-deazaflavins occurs exclusively at the axial C(5) position. This finding may have important biochemical implications on diastereo-differentiation, not only in 5-deazaflavin-dependent cofactor F_{420} , but also in flavin-dependent enzymes.

We thank Professor P. de Kok for helpful discussions on the n.m.r. spectra and Dr. H. Kondo and Mr. Y. Ohama for measurement of the 400 MHz ¹H n.m.r. spectra.

Received, 5th October 1987; Com. 1448

References

- R. H. Sarma and N. O. Kaplan, *Biochemistry*, 1970, 9, 539; N. J.
 Oppenheimer, L. J. Arnold, and N. O. Kaplan, *Proc. Natl. Acad. Sci. USA*, 1971, 68, 3200.
- 2 F. Rob, H. J. van Ramesdonk, W. van Gerreheim, P. Bosma, J. J. Scheele, and J. W. Verhoeven, J. Am. Chem. Soc., 1984, 106, 3826.
- 3 P. M. T. de Kok and H. M. Buck, J. Chem. Soc., Chem. Commun., 1985, 1009.
- 4 L. D. Eirich, G. D. Vogeles, and R. S. Wolfe, *Biochemistry*, 1978, 17, 4853, and references cited therein; P. Hemmerich, V. Massey, and H. Fenner, *FEBS Lett.*, 1977, 84, 5; F. Yoneda, *Yakugaku Zasshi*, 1984, 104, 97.
- 5 S. Shinkai, T. Yamaguchi, H. Nakao, and O. Manabe, *Tetrahedron Lett.*, 1986, 27, 1611.
- 6 S. Shinkai, H. Nakao, I. Kuwahara, M. Miyamoto, T. Yamaguchi, and O. Manabe, J. Chem. Soc., Perkin Trans. 1, in the press.
- 7 P. Kierkegaard, R. Norrestam, P. Werner, I. Csoregh, M. Glehn, R. Karlsson, M. Leijonmarch, O. Ronnquist, B. Sternland, O. Tillberg, and L. Torbjornsson, 'Flavins and Flavoproteins,' University Park Press, Baltimore, 1971, p. 1.